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Abstract

The numerical solution of partial differential equations (PDEs) is challenging because of the need to resolve

spatiotemporal features over wide length and timescales.

Often, it is computationally intractable to resolve the

finest features in the solution. The only recourse is to use approximate coarse-grained representations, which aim to
accurately represent long-wavelength dynamics while properly accounting for unresolved small scale physics. Deriving
such coarse grained equations is notoriously difficult, and often ad hoc. Here we introduce data driven discretization, a
method for learning optimized approximations to PDEs based on actual solutions to the known underlying equations.
Our approach uses neural networks to estimate spatial derivatives, which are optimized end-to-end to best satisfy the
equations on a low resolution grid. The resulting numerical methods are remarkably accurate, allowing us to integrate
in time a collection of nonlinear equations in one spatial dimension at resolutions 4-8x coarser than is possible with

standard finite difference methods.

Solutions of nonlinear partial differential equations can have
enormous complexity, with nontrivial structure over a large
range of length and timescales. Developing effective theories
that integrate out short length scales and fast time scales is a
long standing goal. As examples, geometric optics is an effec-
tive theory of Maxwell equations at scales much longer than
the wavelength of light [1]; Density Functional Theory mod-
els the full many-body quantum wavefunction with a lower
dimensional object — the electron density field [2]; and the ef-
fective viscosity of a turbulent fluid parametrizes how small
scale features affect large scale behavior [3]. These models de-
rive their coarse-grained dynamics by more or less systematic
integration of the underlying governing equations (by using,
respectively, WKB theory, Local Density Approximation and
a closure relation for the Reynold stress). The gains from
coarse graining are, of course, enormous. Conceptually, it al-
lows a deep understanding of emergent phenomena that would
otherwise be masked by irrelevant details. Practically, it al-
lows computation of vastly larger systems.

Averaging out unresolved degrees of freedom invariably re-
places them by effective parameters that mimic typical be-
havior. In other words, we identify the salient features of the
dynamics at short-and-fast scales and replace these with terms
that have a similar average effect on the long-and-slow scales.
Deriving reliable effective equations is often challenging [4].
Here we approach this challenge from the perspective of sta-
tistical inference. The coarse-grained representation of the
function contains only partial information about it, since short
scales are not modeled. Deriving coarse-grained dynamics re-
quires first inferring the small scale structure using the partial
information (reconstruction) and then incorporating its effect
on the coarse-grained field. We propose to perform recon-
struction using machine-learning algorithms, which have be-
come extraordinarily efficient at identifying and reconstruct-
ing recurrent patterns in data. Having reconstructed the fine
features, modeling their effect can be done using our physical
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knowledge about the system. We call our method data-driven
discretization. It is qualitatively different from coarse grain-
ing techniques that are currently in use: instead of analyzing
equations of motion to derive effective behavior, we directly
learn from high resolution solutions to these equations.

Related work Several related approaches for computation-
ally extracting effective dynamics have been previously intro-
duced. Classic works used neural networks for discretizing dy-
namical systems [5, 6]. Similarly, equation-free modeling ap-
proximates coarse-scale derivatives by remapping coarse initial
conditions to fine scales which are integrated exactly [7]. The
method has similar spirit to our approach, but it does not learn
from fine-scale dynamics and use the memorized statistics in
subsequent times to reduce the computational load. Recent
works have applied machine learning to PDEs, either focus-
ing on speed [8-10] or recovering unknown dynamics [11, 12].
Models focused on speed often replace the slowest component
of a physical model with machine learning, e.g., the solution
of Poisson’s equation in incompressible fluid simulations [9],
sub-grid cloud models in climate simulations [10], or building
reduced order models that approximate dynamics in a lower
dimensional space [8, 13, 14]. These approaches are promising,
but learn higher-level components than our proposed method.
An important development is the ability to satisfy some physi-
cal constraints exactly by plugging learned models into a fixed
equation of motion. For example, valid fluid dynamics can be
guaranteed by learning either velocity fields directly [12] or
a vector potential for velocity in the case of incompressible
dynamics [8]. Closely related to this work, neural networks
can be used to calculate closure conditions for coarse grained
turbulent flow models [15, 16]. However, these models rely on
existing coarse-grained schemes specific to turbulent flows and
do not discretize the equations directly. Lastly, [17] suggested
discretizations whose solutions can be analytically guaranteed
to converge to the center manifold of the governing equation,
but not in a data-driven manner.



1 Data driven sub-grid scale modeling

Consider a generic PDE, describing the evolution of a contin-
uous field v(z, t)
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Most PDEs in the exact sciences can be cast in this form,
including equations that describe hydrodynamics, electrody-
namics, chemical kinetics and elasticity. A common algo-
rithm to numerically solve such equations is the method of
lines [18]: given a spatial discretization z1,--- ,zn, the field
v(z,t) is represented by its values at node points v;(t) =
v(z;,t) (finite differences), or by its averages over a grid
cell, v;(t) = Ax~" f;"jﬁz/j v(z’,t)dz’ (finite volumes), where
Az = x; — x;—1 is the spatial resolution [19]. The time evolu-
tion of v; can be computed directly from Eq. (1) by approxi-
mating the spatial derivatives at these points. There are var-
ious methods for this approximation — polynomial expansion,
spectral differentiation, etc. — all yielding formulas resembling
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where the o’ are precomputed coefficients. For example, the
one dimensional (1D) finite difference approximation for % to
first-order accuracy is O,v(z;) = “H" + O(Aw).

Standard schemes use one set of pre-computed coefficients
for all points in space, while more sophisticated methods al-
ternate between different sets of coefficients according to local
rules [20, 21]. This discretization transforms Eq. (1) into a set
of coupled ordinary differential equations of the form
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that can be numerically integrated using standard techniques.
The accuracy of the solution to Eq. (3) depends on Az, con-
verging to a solution of Eq. (2) as Az — 0. Qualitatively,
accuracy requires that Ax is smaller than the spatial scale of
the smallest feature of the field v(z,t) .

However, the scale of the smallest features is often orders
of magnitude smaller than the system size. High performance
computing has been driven by the ever increasing need to ac-
curately resolve smaller scale features in PDEs. Even with
petascale computational resources, the largest direct numer-
ical simulation of a turbulent fluid flow ever performed has
Reynolds number of order 1,000, using about 5 x 10! grid
points [22-24]. Simulations at higher Reynolds number re-
quire replacing the physical equations with effective equations
that model the unresolved physics. These equations are then
discretized and solved numerically, e.g., using the method of
lines. This overall procedure essentially modifies Eq. (2), by
changing the «a; to account for the unresolved degrees of free-
dom, replacing the discrete equations in Eq. (3) with a differ-
ent set of discrete equations.

The main idea of this work is that unresolved physics can
instead be learned directly from data. Instead of deriving an
approximate coarse-grained continuum model and discretizing
it, we suggest directly learning low-resolution discrete models
that encapsulate unresolved physics. Rigorous mathematical
work shows that the dimension of a solution manifold for a
nonlinear PDE is finite [25, 26], and that approximate parame-
terizations can be constructed [27-29]. If we knew the solution
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Figure 1: Polynomial vs. neural net based interpola-

tion (a) Interpolation between known points (blue diamonds)
on a segment of a typical solution of Burgers’ equation. Poly-
nomial interpolation exhibits spurious “overshoots” in the
vicinity of shock fronts. These errors compound when inte-
grated in time, such that a naive finite-difference method at
this resolution quickly diverges. In contrast, the neural net-
work interpolation is so close to the exact solution that it
cannot be visually distinguished. (b) Histogram of exact vs.
interpolated function values over our full validation dataset.
The neural network vastly reduces the number of poor predic-
tions. (c) Absolute error vs. local curvature. The bold line
shows the median and shaded region shows the central 90% of
the distribution over the validation set. The neural network
makes much smaller errors in regions of high curvature, which
correspond to shocks.

manifold we could generate equation specific approximations
for the spatial derivatives in Eq. (2), approximations that have
the potential to hold even when the system is under-resolved.
In contrast to standard numerical methods, the coefficients
ozi") are equation-dependent. Different regions in space (e.g.,
inside and outside a shock) will use different coefficients. To
discover these formulae, we use machine learning: we first
generate a training set of high resolution data, and then learn
the discrete approximations to the derivatives in Eq. (2) from
this dataset. This produces a trade off in computational cost,
which can be alleviated by carrying out high resolution simula-
tions on small systems to develop local approximations to the
solution manifold, and using them to solve equations in much
larger systems at significantly reduced spatial resolution.

Burgers’ equation For concreteness, we demonstrate this

approach with a specific example in one spatial dimension.

Burgers’ equation is a simple nonlinear equation which models

fluid dynamics in 1D and features shock formation. In its
conservative form, it is written as:
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where n > 0 is the viscosity and f(z,t) is an external forcing
term. J is the called a fluz. Generically, solutions of Eq. (4)
spontaneously develops sharp shocks, with specific relation-
ships between the shock height, width and velocity [19] that
define the local structure of the solution manifold.
With this in mind, consider a typical segment of a solution
to Burgers’ equation (Fig. 1(a)). We would like to compute the



time derivative of the field given a low-resolution set of points
(blue diamonds in Fig. 1). Standard finite difference formulas
predict this time derivative by approximating v as a piecewise-
polynomial function passing through the given points (orange
curves in Fig. 1). But solutions to Burger’s equations are not
polynomials, they are shocks with characteristic properties.
By using this information, we can derive a more accurate, al-
beit equation specific, formula for the spatial derivatives. For
the method to work it should be possible to reconstruct the
fine-scale solution from low resolution data. To this end, we
ran many simulations of Eq. (4) and used the resulting data
to train a neural network. Fig. 1 compares the predictions
of our neural net (details below and in SI Appendix) to 4th
order polynomial interpolation. This learned model is clearly
far superior to the polynomial approximation, demonstrating
that the spatial resolution required for parameterizing the so-
lution manifold can be greatly reduced with equation-specific
approximations rather than finite differences.

2 Models for time integration

The natural question to ask next is whether such parameter-
izations can be used for time integration. For this to work
well, integration in time must be numerically stable, and our
models need a strong generalization capacity: even a single
error could throw off the solution for later times.

To achieve this, we use multi-layer neural networks to
parametrize the solution manifold, because of their flexibil-
ity, including the ability to impose physical constraints and
interpretability through choice of model architecture. The
high-level aspects of the network’s design, which we be-
lieve are of general interest, are described below. Addi-
tional technical details are described in the SI Appendix
and source code is available online at https://github.com/
google/data-driven-discretization-1d.

Pseudo-linear representation Our network represents
spatial derivatives with a generalized finite-difference formula
similar to Eq. (2): the output of the network is a list of
coefficients «g,...,anx such that the n-th derivative is ex-
pressed as a pseudo-linear filter, Eq. (2), where the coefficients
a5n>(v1,v2, ...) depend on space and time through their de-
pendence on the field values in the neighboring cells. Finding
the optimal coefficients is the crux of our method.

The pseudo-linear representation is a direct generalization
of the finite-difference scheme of Eq. (2). Moreover, exactly
as in the case of Eq. (2), a Taylor expansion allows us to
guarantee formal polynomial accuracy. That is, we can impose
that approximation errors decay as O(Az™) for some m <
N —n, by layering a fixed affine transformation (see SI). We
found the best results when imposing linear accuracy, m = 1
with a 6-point stencil (N = 6), which we used for all results
shown here. Lastly, we note that this pseudo-linear form is also
a generalization of the popular ENO and WENO methods [20,
21], which choose a local linear filter (or a combination of
filters) from a precomputed list according to an estimate of
the solution’s local curvature. WENO is an efficient, human-
understandable, way of adaptively choosing filters, inspired
by nonlinear approximation theory. We improve on WENO
by replacing heuristics with directly optimized quantities.

Physical constraints Since Burgers’ equation is an in-
stance of the continuity equation, as with traditional methods,
a major increase in stability is obtained when using a finite-
volume scheme, ensuring the coarse-grained solution satisfies
the conservation law implied by the continuity equation. That
is, coarse-grained equations are derived for the cell averages of
the field v, rather than its nodal values [19]. During training
we provide the cell average to the network as the “true” value
of the discretized field.

Integrating Eq. (4), it is seen that the change rate of the cell
averages is completely determined by the fluxes at cell bound-
aries. This is an exact relation, in which the only challenge is
estimating the flux given the cell averages. Thus, prediction is
carried out in three steps: first, the network reconstructs the
spatial derivatives on the boundary between grid cells (stag-
gered grid). Then, the approximated derivatives are used to
calculate the flux J using the exact formula Eq. (4). Lastly,
the temporal derivative of the cell averages is obtained by cal-
culating the total change at each cell by subtracting J at the
cell’s left and right boundaries. The calculation of the time
derivative from the flux can also be done using traditional
techniques that promote stability, such as monotone numeri-
cal fluxes [19]. For some experiments, we use Godunov flux,
inspired by finite-volume ENO schemes [20, 21], but it did not
improve predictions for our neural networks models.

Dividing the inference procedure into these steps is favor-
able in a few aspects: First, it allows to constrain the model
at the various stages using traditional techniques: the conser-
vative constraint, numerical flux and formal polynomial accu-
racy constraints are what we use here, but other constraints
are also conceivable. Second, this scheme limits the machine-
learning part to reconstructing the unknown solution at cell
boundaries, which is the main conceptual challenge, while the
rest of the scheme follows either the exact dynamics or tra-
ditional approximations for it. Third, it makes the trained
model more interpretable since the intermediate outputs (e.g.,
J or «;) have clear physical meaning. Lastly, these physical
constraints contribute to more accurate and stable models, as
detailed in the ablation study in the SI Appendix.

Choice of loss The loss of a neural net is the objective
function minimized during training. Rather than optimizing
the prediction accuracy of the spatial derivatives, we optimize
the accuracy of the resulting time derivative'. This allows us
to incorporate physical constraints in the training procedure
and directly optimize the final predictions rather than inter-
mediate stages. Our loss is the mean squared error between
the predicted time derivative and labeled data produced by
coarse graining the fully-resolved simulations.

Note that a low value of our training loss is a necessary but
not sufficient condition for accurate and stable numerical inte-
gration over time. Many models with low training loss exhib-
ited poor stability when numerically integrated (e.g., without
the conservative constraint), particularly for equations with
low dissipation. From a machine learning perspective, this is
unsurprising: imitation learning approaches, such as our mod-
els, often exhibit such issues because the distribution of inputs

1For one specific case, namely the constant-coefficient model of Burg-
ers’ Equation with Godunov flux limiting, trained models showed poor
performance (e.g., not monotonically increasing with resample factor)
unless the loss explicitly included the time-integrated solution, as done
in [9]. Results shown in Figs. 3 & 4 use this loss for the constant coef-
ficient models with Burgers’ Equation. See details in the SI.
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Figure 2: Learned finite volume coefficients for Burg-
ers’ equation. Fixed and spatiotemporally varying finite vol-
ume coefficients Ozgl),...,aél) (see Eq. (2)) for dv/dz. (a)
Various centered and one-sided polynomial finite volume coef-
ficients, along with optimized constant coefficients trained on
this dataset (16x resample factor in Figure 3). The vertical
scale, which is the same for all coefficient plots, is not shown
for clarity. (b) An example temporal snapshot of a solution to
Burgers’ equation [Eq. (4)], along with data-dependent coeffi-
cients produced by our neural network model at each of the in-
dicated positions on cell boundaries. The continuous solution
is plotted as a dashed line, and the discrete cell-averaged rep-
resentation is plotted as a piecewise constant solid line. The
optimized constant coefficients are most similar to the neu-
ral network’s coefficients at the shock position. Away from
the shock, the solution resembles centered polynomial coeffi-
cients. (Inset) Relative probability density for neural network
coefficient “center of mass” vs. field value v across our full test
dataset. Center of mass is calculated by averaging the posi-
tions of each element in the stencil, weighted by the absolute
value of the coefficient.

produced by the model’s own predictions can differ from the
training data [30]. Incorporating the time-integrated solution
into the loss improved predictions in some cases (as in [9]), but
did not guarantee stability, and could cause the training pro-
cedure itself to diverge due to decreased stability in calculating
the loss. Stability for learned numerical methods remains an
important area of exploration for future work.

Learned coefficients We consider two different parameter-
izations for learned coefficients. In our first parametrization,
we learn optimized time- and space-independent coefficients.
These fixed coefficients minimize the loss when averaged over
the whole training set for a particular equation, without al-
lowing the scheme to adapt the coefficients according to local
features of the solution. Below, we refer to these as “optimized
constant coefficients”. In our second parametrization, we al-
low the coefficients to be an arbitrary function of the neigh-
boring field values {v;}, implemented as a fully-convolutional
neural network [31]. We use the exact same architecture (three
layers, each with 32 filters, kernel size of 5 and ReLLU nonlin-
earity) for coarse-graining all equations discussed in this work.

Example coefficients predicted by our trained models are
shown in Fig. 2 and SI Appendix, Fig. S3. Both the optimized
constant and data-dependent coefficients differ from baseline
polynomial schemes, particularly in the vicinity of the shock.
The neural network solutions are particularly interesting: they

do not appear to be using one-sided stencils near the shock, in
contrast to traditional numerical methods such as WENO [21]
which avoid placing large weights across discontinuities.

The output coefficients can also be interpreted physically.
For example, coeflicients for both dv/dz (Fig. 2(b) inset) and
v (SI Appendix, Fig. S3c) are either right- or left-biased, op-
posite the sign of v. This is in line with our physical intuition:
Burgers’ equation describes fluid flow, and the sign of v cor-
responds to the direction of flow. Coefficients that are biased
in the opposite direction of v essentially look “upwind,” a
standard strategy in traditional numerical methods for solv-
ing hyperbolic PDEs [19], which helps constrain the scheme
from violating temporal causality. Alternatively, upwinding
could be built into the model structure by construction, as we
do in models which use Godunov flux.

3 Results

Burgers’ equation To assess the accuracy of the time inte-
gration from our coarse grained model, we computed “exact”
solutions to Eq. (4) for different realizations of f(z,t) at high
enough resolution to ensure mesh convergence. These realiza-
tions of f were drawn from the same distribution as the those
used for training, but were not in the training set. Then, for
the same realization of the forcing we solved the equation at a
lower, possibly under-resolved resolution using four different
methods for calculating the flux: (a) a standard finite volume
scheme with either 1st order or 3rd order accuracy; (b) 5th
order upwind-biased WENO scheme with Godunov flux [21];
(c) spatial derivatives estimated by constant optimized coeffi-
cients, with and without Godonov flux; and (d) spatial deriva-
tives estimated by the space- and time-dependent coefficients,
computed with a neural net.

Results are shown in Fig. 3. Panel (a) compares the integra-
tion results for a particular realization of the forcing for dif-
ferent values of the resample factor, that is, the ratio between
the number of grid points in the low resolution calculation
and that of the fully converged solution?. Our learned mod-
els, both with constant and solution-dependent coefficients,
can propagate the solution in time and dramatically outper-
form the baseline method at low resolution. Importantly, the
ringing effect around the shocks, which leads to numerical in-
stabilities, is practically eliminated.

Since our model is trained on fully resolved simulations, a
crucial requirement for our method to be of practical use is
that training can be done on small systems, but still produce
models that perform well on larger ones. We expect this to be
the case, since our models, being based on convolutional neu-
ral networks, use only local features and by construction are
translation invariant. Panel (b) illustrates the performance of
our model trained on the domain [0, 2] for predictions on a
ten times larger spatial domain of size [0,207]. The learned
model generalizes well. For example, it shows good perfor-
mance by when function values are all positive in a region of
size greater than 27, which due to the conservation law cannot
occur in the training dataset.

To make this assessment quantitative, we averaged over

2Physically, the natural measure of the spatial resolution is with
respect to the internal length-scale of the equation which in the case
of Burgers’ equation is the typical shock width. However, since this
analysis is meant to be applicable also to situations where the internal
length-scale is a-priori unknown, we compare here to the length-scale at
which mesh convergence is obtained.
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Figure 3: Time integration results for Burgers’ equa-
tion. (a) A particular realization of a solution at varying res-
olution solved by the baseline 1st order finite volume method,
WENO, optimized constant coefficients with Godunov flux,
and the neural network, with the white region indicating times
when the solution diverged. Both learned methods manifestly
outperform the baseline method, and even outperform WENO
at coarse resolutions. (b) Inference predictions for the 32x
neural network model, on a ten times larger spatial domain
(only partially shown). The box surrounded by the dashed
line shows the spatial domain used for training. (c) Mean
absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing
realizations on the ten-times larger inference domain. These
metrics almost exactly match results on the smaller training
domain [0, 27] (Fig. S8). As ground truth, we use WENO sim-
ulations on a 1x grid. Markers are omitted if some simulations
diverged or if the average error is worse than fixing v = 0.

many realizations of the forcing and calculated the mean ab-
solute error integrated over time and space. Results on the
ten-times larger inference domain are shown in panel (c): the
solution from the full neural network has equivalent accuracy
to increasing the resolution for the baseline by a factor of
about 8x. Interestingly, even the simpler constant-coefficient
method significantly outperforms the baseline scheme. The
constant coefficient model with Godunov flux is particularly
compelling. This model is faster than WENO, because there
is no need to calculate coefficients on the fly, with comparable
accuracy and better numerical stability at coarse resolution,
as shown in panel (a) and Fig. 4.

These calculations demonstrate that neural networks can
carry out coarse graining. Even if the mesh spacing is much
larger than the shock width, the model is still able to ac-
curately propagate dynamics over time, showing that it has
learned an internal representation of the shock structure.
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Figure 4: Model performance across all of our test
equations. Each plot shows the median time for which an
integrated solution remains “valid” for each equation, defined
by the absolute error on at least 80% of grid points being less
than the 20th percentile of the absolute error from predicting
all zeros. These thresholds were chosen so that “valid” corre-
sponds to relatively generous definition of an approximately
correct solution. Error bars show the 95% confidence interval
for the median across 100 simulations for each equation, deter-
mined by bootstrap resampling. Simulations for each equation
were run out to a maximum of time of 100.

Other examples To demonstrate the robustness of this
method, we repeated the procedure for two other canonical
PDEs: the Korteweg-de Vries (KdV) equation [32], which was
first derived to model solitary waves on a river bore and is
known for being completely integrable and to feature soli-
ton solutions; and the Kuramoto-Sivashinsky (KS) equation
which models flame fronts and is a textbook example of a
classically chaotic PDE [33]. All details about these equa-
tions are given in the SI. We repeated the training procedure
outlined above for these equations, running high resolution
simulations and collecting data to train equation-specific esti-
mators of the spatial derivative based on a coarse grid. These
equations are essentially non-dissipative, so we do not include
a forcing term. The solution manifold is explored by changing
the initial conditions, which are taken to be a superposition of
long-wavelength sinusoidal functions with random amplitudes
and phases (see SI for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Figure 4 shows the median valid simulation time as a func-
tion of the resample factor. For all equations and resolutions,
our neural network models have comparable or better perfor-
mance than all other methods. The neural network is par-
ticularly advantageous at low resolutions, demonstrating its
improved ability to solve coarse-grained dynamics. The opti-
mized constant coefficients perform better at coarse resolution
than baseline methods, but not always at high resolutions.
Finally, at large enough resample factors the neural network
approximations also fails to reproduce the dynamics, as ex-
pected. These results also hold on a ten-times larger spatial
domain, as shown in the SI, along with figures illustrating
specific realizations and mean absolute error.



4 Discussion and conclusion

It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary func-
tions: they are highly constrained by the equations they solve.
In mathematical terms, despite the fact that the solution set
of a PDE is nominally infinite dimensional, the inertial man-
ifold of solutions is much smaller, and can be understood in
terms of interactions between local features of the solutions
to nonlinear PDEs. The dynamical rules for interactions be-
tween these features have been well studied over the past fifty
years. Examples include, among many others, interactions of
shocks in complex media, interactions of solitons [32], and the
turbulent energy cascade [34].

Machine learning offers a different approach for modeling
these phenomena, by using training data to parametrize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, mo-
tivated by coarse graining in physical systems. It is often
the case that coarse graining a PDE amounts to modifying
the weights in a discretized numerical scheme. Instead, we
use known solutions to learn these weights directly, generat-
ing data driven discretizations. This effectively parametrizes
the solution manifold of the PDE, allowing the equation to be
solved at high accuracy with an unprecedented low resolution.

Faced with this success, it is tempting to try and leverage
the understanding the neural network has developed in order
to gain new insights about the equation or its coarse-grained
representation. Indeed, in Fig. 2 we could clearly interpret the
directionality of the weights as an upwind bias, the pseudolin-
ear representation providing a clear interpretation of the pre-
diction in a physically sensible way. However, extracting more
abstract insight from network, such as the scaling relation be-
tween the shock height and width is a difficult challenge. This
is a general problem in the field of machine learning, which is
under intensive current research [35, 36].

Our results are promising, but two challenges remain be-
fore our approach can be deployed at large scales. The first
challenge is speed. We showed that optimized constant co-
efficients can already improve accuracy, but our best mod-
els rely on the flexibility of neural networks. Unfortunately,
our neural nets use many more convolution operations than
the single convolution required to implement finite differences,
e.g., 322 = 1024 convolutions with a five point stencil between
our second and third layers. We suspect that other machine
learning approaches could be dramatically faster. For exam-
ple, recent work on a related problem — inferring sub-pixel
resolution from natural images — has shown that banks of pre-
trained linear filters can nearly match the accuracy of neural
nets with orders of magnitude better performance [37, 38].
The basic idea is to divide input images into local patches,
classify patches into classes based on fixed properties (e.g.,
curvature and orientation), and learn a single optimal linear
filter for each class. Such computational architectures would
also facilitate extracting physical insights from trained filters.

A second challenge is scaling to higher dimensional problems
and more complex grids. Here we showcased the approach for
regular grids in one dimension, but most problems in the real
world are higher dimensional, and irregular and adaptive grids
are common. We do expect larger potential gains in two and
three dimensions, as the computational gain in terms of the

number of grid points would scale like the square or the cube of
the resample factor. Irregular grids may be more challenging,
but deep learning methods that respect appropriate invariants
have been developed both for arbitrary graphs [39] and col-
lections of points in 3D space [40]. Similar to what we found
here, we expect that hand-tuned heuristics for both gridding
and grid coefficients could be improved upon by systematic
machine learning. More broadly, data driven discretization
suggests the potential of data driven numerical methods, com-
bining the optimized approximations of machine learning with
the generalization of physical laws.
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Supplemental Materials

Appendix I: Neural network model

Model details Complete source code, allowing produc-
tion of a training dataset, training the network on it,
and deployment of the resulting coarse-grained equation
is freely available online at https://github.com/google/
data-driven-discretization-1d. Our model, including all
physical constraints, was implemented using the TensorFlow
library [41]. In the calculations presented here, the model had
three fully convolutional layers, each with 32 filters of a fixed
kernel of size five and with a ReLU nonlinearity between each
layer. Our neural network predictions at a single point are
thus dependent on values of the local solution over a maximum
range of 13 grid cells, independent of the model resolution.
The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architec-
ture. The coarse grained function values are fed into a neural
network. The network’s output, the coefficients agn), are com-
bined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation
for the flux, which is used to calculate the temporal deriva-
tive by a first-order divergence. Training minimizes either
the difference between the calculated time derivative and the
true one (most models), or the difference between the calcu-
lated evolved state at future times and the true evolved state
(Burgers’ equation with constant coefficients only, as noted
below).

We trained our models using the Adam optimizer for
4.0000 x 10" steps total, decreasing the learning rate by a fac-
tor of 10 after 2.0000 x 10" steps. For most models we used
an initial learning rate of 3 x 1073, with the exception of KdV
and KS models with a resample factor of 16x and higher, for
which we used an initial learning rate of 1 x 1073, We used a

2
Burgers: J=L
2
Kortweg-de Vries (KdV): J =30+ ——
02
Kuramoto-Shivashinski (KS): J =5

where the function f(z,t), described below, is initialized with
random components to allow for sampling over a manifold of
solution. The form of these equations is written to empha-
size their similar structure; the standard form of KdV can be
obtained by substituting v — —wv. All equations employ pe-
riodic boundary conditions. For training, we used domains of
size L = 27 for Burgers’ equation, L = 32 for KdV and L = 64
for KS. For Burgers’ equation, we set n = 0.01.

Random parameters In order to explore the solution man-
ifold, we introduce randomness either to the forcing (Burgers’

batch size of 128 times the resampling factor. All of our re-
sults show models trained with the time-derivative loss, with
the exception of the “optimized constant coefficient” models
for Burgers’ equation, which was trained to predict 8 forward
time-steps with the midpoint method. Each individual model
trained to completion in less than an hour on a single Nvidia
P100 GPU.

We found that some of our models had highly variable per-
formance on different model training runs, due to random-
ness in the training procedure and a lack of guarantees of
numerical stability in our training procedure. To ameliorate
this issue and improve the interpretability of our results, we
trained each model ten times and in most results only show
predictions from only the best overall performing model for
each task. Predictions from the worst-performing models are
shown below in S10.

Godunov numerical flux For some models, we used Go-
dunov numerical flux for the convective term v? in the flux.
Following the example of numerical fluxes for WENO meth-
ods [21], we construct both left- and right-sided estimates of

v (with separate o coefficients for each), v~ and v™*, and com-
bine them according to the Godunov flux rule for J(v) = v*:

min[(v7)?, (vF)?]
2 +)2]

ifo- <ot

ifo~ >0t (5-1)

Jgodunov(v_zv+) = {

max[(v™)

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x
and time dimension ¢. All of our equations can be written in
the same conservative form,

ov  0J
E % - F(J,‘, t) ’ U(:C7t - 0) - 7JO(:L,): (8_2)
with different choices for the flux J,
forcing F and initial conditions vo:
0
”a%’ F=f(z,t), vo=0 (S-3)
0%
922 F =0, Vo Ef(l‘, 0) (8'4)
v 9%
— F = = . -
Bt Feo v =f(z,0) (5-5)

equation) or to the initial conditions (KS & KdV). The ran-
dom signal that we use is a sum of long-wavelength sinusoidal
functions:

N
f(z,t) = Z A; sin(wit + 2z /L + ¢5),

=1

(S-6)

with the following parameters:
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Burgers’ KdV and KS
A [—0.5,0.5]
w [—0.4,0.4]
¢ [0, 27]
L {3,4,5,6} {1,2,3}
N 20 10

Each parameter is drawn independently and uniformly from
its range. For generating Fig. 3(b) and 3(c) of the main text,
i.e., deploying the trained model on a 10x larger domain, ¢
was allowed to take on integer value that would result in a
wavenumber k = 27¢/L within the range of the original train-
ing data, i.e., {30,31,32,...,60}.

Training data To train the network we generate a set of
8000 high-resolution solutions to each equation, sampled at
regular time intervals from 800 numerical integrations. Five
randomly selected examples for each equation are shown in
Fig. S2 To obtain high accuracy “exact” solutions to Burg-
ers’ equation on a fully resolved grid, we used a fifth-order
WENO method and 512 grids points. For KdV and KS, we
used a pseudo-spectral method for numerical differentiation
(which we found to be more accurate than Finite Volumes),
with 256 grid points. However, for calculating the loss during
training we used third-order Finite Volumes on the spectral
method’s solution to calculate spatial derivatives. For unclear
reasons, our learned models for KdV and KS at low resample
factors did not perform well when using spectral derivatives
for ground-truth. One possibility is that a lack of access to the
global features used by the spectral methods made it impossi-
ble for our models (which are spatially local by construction)
to exactly copy their behavior.

Time integration For numerical time integration to pro-
duce training and evaluation datasets, we used an explicit
Runge-Kutta method of order 3(2) with adaptive time-
stepping, as implemented in the SciPy package. For time
integration during the training procedure itself, we used the
midpoint method with a fixed time-step of 0.001 for Burgers’
equation, based on the minimum time-step on the high reso-
lution grid chosen by adaptive time-stepping. We used these
methods due to their robustness and simplicity, but they are
certainly mot an optimized time integration methods for these
equations. For example, a practical method for the viscous
Burgers’ equation should use implicit time-stepping, because
the diffusive term limits the maximum stable explicit time step
to be smaller than the square of the grid spacing. Nonetheless,
we believe this is appropriate because the focus of this paper
is not on improving the time discretization.

Appendix III:
straints

Polynomial accuracy con-

Our method represents the spatial derivative at a point x¢ as
a linear combination of the function values at IV neighbors of
xo. That is, for a given derivative order ¢, we write

o'f

7
ozt |,

N
= Z Oénf(xo + hn)

n=1

(8-7)

=zq

where h,, is the offset of the n-th neighbor on the coarse grid.
Note that in the main text we only deal with uniformly spaced
meshes, h, = n Az, but this formalism holds for an arbitrary
mesh. A crucial advantage of this writing is that we can en-
force arbitrary polynomial accuracy up to degree m, as long
as m < N — {, by imposing an affine constraint on the a’s.
That is, we can ensure that the error in approximating f(z)
will be of order A" for some m < N — /.

To see this, note that the standard formula for deriving the
finite difference coefficients for the ¢-th derivative with an N-
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Figure S2: Five random samples from the training dataset each for (a) Burgers’ equation, (b) KdV and (c) KS.

point stencil is obtained by solving the linear set of equations

do,¢
h9 % a1 :
: : —ol| s (S-8)
RN ry ') \an
ON—1,.

where 4; ; is the Kronecker delta [42].

These equations are obtained by expanding Eq. (S-7) in a
Taylor series up to order m — 1 in the vicinity of z¢ and requir-
ing equality of order O(h™) for arbitrary functions. Each row
in the set of equations corresponds to demanding that a term
of order h* will vanish, for k = 0,1,..., N — 1. The resulting
formula is approximate to polynomial order N — ¢ [42] and
the system of equations is fully determined, that is, a unique
solution exists, which is obtained by inverting the matrix. A
similar set of linear constraints for finite volume methods can
be derived by averaging over each unit cell [21].

Imposing a lower order approximation amounts to remov-
ing the bottom rows from the equation Eq. (S-8). Specifically,
imposing accuracy of order m amounts to keeping the first
m — N + ¢ rows, which makes the system under-determined.
Therefore, any solution for o can be written as a sum of an
arbitrary fixed solution (say, the standard-finite difference for-
mula of order m) plus a vector & from the null-space of the
matrix of Eq. (S-8) (with removed rows).

Appendix IV: Interpolation model

The neural network model for interpolation of Burgers’ equa-
tion shown in Fig. 1 of the main text uses the same training
datasets and a similar model structure to our time integration
models. Instead of predicting cell average values, we train the
model to predict the subsampled function values at all inter-
mediate locations from a high-resolution simulation as zeroth

order spatial derivatives, imposing first-order accuracy con-
straints. We use an 8x subsampled grid, so the outputs of our
model are seven interpolated values between each adjacent
pair of seed points. We use the mean squared error at each
interpolated point as the loss, scaled such that linear interpo-
lation on the training dataset has a loss of one, and an initial
learning rate of 1 x 1073, Otherwise, all details match the
neural network models described in Appendix I. The fourth
order polynomial interpolation between points x; and x;t1 is
based on the function values at {vi—1,vi, Vit1,vit1}, which
closely corresponds to the interpolation used by traditional
finite difference (not finite volume) method.

For Fig. 1(c), we define the curvature of each point as the
maximum value of |9%v/82?| over the interpolated interval
on the high resolution grid. This heuristic, which is similar
to the those used for identifying smooth regions by WENO
methods [21], provides a good indicator of whether or not the
solution is interpolating over a shock front.

Appendix V: Additional plots of coefficients

Figure S3 shows learned finite volume coefficients for recon-
structing the field value v for Burgers’ equation. Similar to
the situation for the coefficients for dv/dz shown in Fig. 2,
the neural network has learned upwinding.

Figure S4 shows optimized constant coefficients for Burg-
ers’, KAV and KS equations at all resample factors for which
the optimized coefficients showed any improvement over stan-
dard coefficients. The optimized coefficients often, but not al-
ways, differ significantly from standard centered coefficients,
particularly for lower order derivatives.

Figure S5 shows optimized constant coefficients for all equa-
tions using the Godunov flux. For both Burgers’ and KS, the
optimized coefficients make use of “upwinding,” especially at
coarser resolutions.

10
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Figure S4: Optimized constant finite volume coefficients for the equations studied in this work at varying resample factor.
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and first derivatives, and 4-point and 6-point stencils for second and third derivatives.
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Appendix VI: Results for KdV and KS equa-
tions

Similar to Fig. 3(a) and 3(b) in the main text, Figures S6 and
S7 show particular realizations of solutions to the KdV and KS
Equations, respectively, on both the a domain of the same size
as the training domain and on a 10x larger validation domain
(for the 8x resample factor model). The figures show how the
same initial condition is solved at different resample factors
by the baseline finite-difference method and neural network,
demonstrating that our method significantly outperforms the
baseline. They also show that our models for KdV and KS
also generalize to a much larger spatial domain than used for
training.

Similar to Fig. 3(c) in the main text, Fig. S8 shows mean
absolute error for coarse grained models of KAV and KS at dif-
ferent resample factors, averaged over 100 realizations of each
model on the training spatial domain, and 10 realizations of
each model on a ten-times larger spatial domain. It is only
possible to compare mean absolute error for short times, be-
cause at long times bad models diverge and the mean becomes
undefined. Similar to Fig. 4 in the main text, Figure S9 shows
median survival time for all models on the ten-times larger
domain. The ranking of models in both figures is broadly
consistent with Fig. 4 .

Appendix VII: Ablation study

To understand the importance of various physical constraints
in our model architecture, we performed an ablation study,

12

comparing various modeling choices with the same neural net-
work models. In order of increasing level of physical con-
straints, these include:

e “Time derivative” models that predict the time deriva-
tive du /0t directly, without any incorporation of physical
prior knowledge at all.

e “Flux” models that predict the flux J at the boundary be-
tween grid cells and use that to compute the time deriva-
tive with the continuity equation, without any knowledge
of the physical equation.

e “Space derivatives“ models that predict spatial deriva-
tives without any constraints, and plug those spatial
derivatives into the physical equation to compute the flux.

e “Coefficients” models that predict linear coefficients used
in finite difference formula for computing space deriva-
tives.

e “Constrained coefficients” models that predict linear co-
efficients constrained to at least first-order accuracy.

e “Godunov constrained coefficients” models that predict
constrained coefficients, and additionally use the Go-
dunov numerical flux for the convective term in the flux.

In addition, we also experimented with finite-difference mod-
eling (coarse-graining by subsampling) rather than the finite-
volume modeling (coarse-graining by averaging) used in all of
the above. Generally speaking, finite difference models can
also work but they perform worse than finite volumes, as with
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Figure S6: (a) Particular realization of the solution for the Korteweg-de Vries (KdV) equation at varying resolution solved by
the baseline 1st order finite volume method (top row), optimal constant coefficients (second row), the neural network (third
row) and the exact coarse-grained solution (bottom row). Blank regions indicate where the solver has diverged. Note that
optimal constant coefficients exhibit lower error at small times than the baseline coefficients, even though the 2x and 4x models
suffer from worse numerical stability. (b) Inference predictions for the 8x neural network model, on a ten times larger spatial
domain (only partially shown). The box surrounded by the dashed line shows the spatial extent of the training domain.
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Figure S7: Same as S6, but for the Kuramoto-Shivashinsky (KS) equation.

13



Burgers' Korteweg-de Vries

Kuramoto Sviashinsky

1071 ]
£ 1071 o
© E -1
g ] 10
he} 10_2 :
© -2
© 10775 102
5 @107 ]
E X% ]
[J) — .
[V]
= 10-4 1073 E 10-3 A 1lstorder
3 E Vv 3rd order
) T T T T T T T T T T T T T T T T T T
% ; 100 @ Opt. const.
c ] % Opt. God. const.
¢ _10 1 # WENO
= = 1071 5 m Neural net
g E 1071
o -4
ko] 10—2 4
5 i
= -2
g 1077 1072
w1073 1
X 4
o
S i
104 103 E 103
T T T T T T T T T T T T T T T T T T
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Resample factor Resample factor Resample factor

Figure S8: Mean absolute error for Burgers’, KAV and KS at short times (¢t < 15, ¢ < 1 and ¢t < 3, respectively) on both the
1x spatial domain used for training and the 10x larger domain only used for inference. The 10x domain results for Burgers’
equation in the bottom left panel are duplicated for comparison purposes from Fig. 3(c) of the main text.

traditional numerical methods. We do not report these results
here for brevity.
The results, shown in Fig. S10, suggest a number of trends:

1. Consistent results across all equations and grid resolu-
tions were only achieved with the “constrained coeffi-
cients” and “Godunov constrained coefficients” models.
For Burgers’ and KS, these models achieved good results
on all training runs.

2. Physical constraints dramatically improve the perfor-
mance of trained models on fine-resolution grids, but have
a smaller influence on results for low-resolution (large re-
sample factor) grids. This makes sense for two reasons:
First, low resample factor is closer to the continuum limit,
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Fig.

for which these physical constraints and the equations
themselves hold exactly. Second, due to the CFL condi-
tion fine-resolution models use a smaller timestep. There-
fore, when integrated for the same fixed amount of time,
the fine-resolution models are repeatedly applied more
times than low resolution ones, making them more sensi-
tive to numerical stability.

. Building in the Godunov flux does not directly improve

the predictions of neural network models. Apparently
Eq. (S-1) is simple enough that it is easy for a neural
network to learn, as shown in Fig. 2 in the main text and
S3.
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optimized Godunov constant model for Burgers’ equation are obscured in the plot by the results for the neural network model.
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